
Performance optimization of the Smoothed Particle
Hydrodynamics code Gadget3 on 2nd generation Intel Xeon Phi

Dr. Luigi Iapichino luigi.iapichino@lrz.de

Leibniz Supercomputing Centre

Supercomputing 2017

Intel booth, Nerve Center

mailto:luigi.iapichino@lrz.de

2

Work main contributors

● Member of the Intel Parallel
Computing Center (IPCC) @
LRZ/TUM

● Expert in computational
astrophysics and simulations

Dr. Luigi Iapichino
Scientific Computing Expert
Leibniz Supercomputing Centre

Email: luigi.iapichino@lrz.de. WWW: http://iapichino.userweb.mwn.de

● Some of the results shown
here are based on work
performed with
Dr. Fabio Baruffa (now at Intel)

mailto:luigi.iapichino@lrz.de

3

Outline of the talk

● Overview of the code: P-Gadget3.

● Modernization of a code kernel.

● Back-porting to the full code.

● Optimization steps on Knights Landing (KNL).

● Performance results, takeaways from our KNL experience.

Simulation details:
www.magneticum.org

4

Gadget intro

● Leading application for simulating the formation of
the cosmological large-scale structure (galaxies and
clusters) and of processes at sub-resolution scale
(e.g. star formation, metal enrichment).

● Publicly available, cosmological TreePM N-body +
SPH code.

● First developed in the late 90s as
serial code, later evolved as an MPI
and a hybrid code.

● Good scaling performance up to
O(100k) Xeon cores (SuperMUC@LRZ).

Introduction
Simulation details:
www.magneticum.org

5

Previous optimization work
(Baruffa, Iapichino, Hammer & Karakasis, proceedings of HPCS 2017)

● The representative code kernel subfind_density was isolated and run as
a stand-alone application, avoiding the overhead from the whole simulation.

● Focus on node-level performance, through minimally invasive changes.

● We use tools from the Intel® Parallel Studio XE (VTune Amplifier and Advisor).

● Code optimizazion through:
➢ Better threading parallelism;
➢ Data optimization (AoS → SoA);
➢ Promoting more efficient vectorization.

● Up to 19x faster execution on KNL.

Also available as: https://arxiv.org/abs/1612.06090

https://arxiv.org/abs/1612.06090

6

Modernizing the threading parallelism of the isolated
kernel

Multi-threading parallelism

thread spinning

● Severe shared-memory
parallelization overhead

● At later iterations, the
particle list is locked and
unlocked constantly due
to the recomputation

● Spinning time 41%

7

Improved performance

Multi-threading parallelism

no spinning

● Lockless scheme: lock
contention removed
through “todo” particle
list and OpenMP
dynamic scheduling.

● Time spent in spinning
only 3%

8

Improved speed-up of the isolated kernel on KNL

Multi-threading parallelism

● Knights Landing Processor 7210 @ 1.3 GHz,
64 cores. KMP Affinity: scatter;
Configuration Quadrant/Flat.

● On KNL @ 64 threads:
➢ speed-up wrt original version: 5.7x
➢ parallel efficiency: 73%

● Crucial for target performance: OpenMP
threads per MPI task on the full code? On 16
threads on KNL, speed-up improvement 2.3x.

● Remark: the back-porting is based on a
different physical workload, where the
performance gain is lower (let’s discuss this
later...)

9

Guideline for the optimization on KNL

Back-porting

Optimization for KNL seen as a three-step process:

Step Effort Expected performance

Compilation “out of the
box”

1 hour Lower than Haswell
(~ 1.5x)

Optimization without
coding (use of AVX512,
explore configuration,
MCDRAM, MPI/OpenMP)

1 week Up to 2x over previous
step

Optimization with coding 1-3 months (IPCC: 2
years)

Up to the level of
Broadwell

Freely adapted from Leijun Hu,
Inspur @ ISC 2017

10

Back-porting: development steps on KNL

Back-porting

Code version Description Notes

Original “Out-of-the-box” default
environment, v. 2016 Intel
compiler and libraries, no
KNL-specific flags.

Step 0 v. 2018 Intel compiler and
libraries, -xMIC-AVX512.

The code does not benefit
from specific cluster or
memory modes.

Optimized Threading parallelism
improved in subfind_density.
Other minor improvements.

MPI/OpenMP configuration
set by target, not by optimal
performance.

Freely adapted from Leijun Hu,
Inspur @ ISC 2017

11

Performance results

Results

Code version Time (total) [s] Time (subfind_density)
[s], % of total

Original 167.4 22.6 (13.5%)

Step 0 142.1 17.1 (12.1%)

Optimized 137.1
1.2x

12.7 (9.3%)
1.8x (isolated kernel: it
was 1.4x)

Freely adapted from Leijun Hu,
Inspur @ ISC 2017

One-node tests, performed on an Intel Xeon Phi (KNL) 7210 @ 1.30GHz with 64 cores.
Configuration: Quad/flat with allocation on DDR. 4 MPI tasks, 16 OpenMP threads each.

12

Understanding results and performance targets

● Based on our experience 4-8 MPI
tasks per KNL should be optimal.

● A complete back-porting should
improve the OpenMP layer and move
the best performance to the left.

● For comparison: currently the best
performance on a Haswell node
is for the pure-MPI case!

● Best performance KNL: 53.2s (total),
10.8s (subfind_density, 20.3%).

● Best performance HSW: 42.6s (total),
11.4s (subfind_density, 26.7%). Parameter study of the MPI / OpenMP ratio on a KNL node.

Results

13

Summary and outlook
● Along the described development steps, performance improvement on KNL is 1.2x

for the whole code, 1.8x for the optimized kernel subfind_density.

● Improvements are portable also on Xeon (ongoing tests on newer versions).
● The improvement of subfind_density is in line with predictions based on the isolated

kernel (1.4x), thus verifying our approach.

● Performance gap with Haswell: the original code was 1.7x slower on KNL, the
optimized is 1.3x slower. For subfind_density: the original version was 1.50x
slower on KNL, the optimized one only 1.16x slower → closing the gap!

● Room for further improvement?
➢ Complete back-porting of further steps (data layout, vectorisation);
➢ Back-port to other two major routines (~70% total time);
➢ Explore and modernize also the MPI layer of the code.

More information: www.lrz.de/services/compute/labs/astrolab/ipcc

14

Acknowledgements

● Research supported by the Intel® Parallel Computing Center program.
● P-Gadget3 developers: Klaus Dolag, Margarita Petkova, Antonio Ragagnin.

● Research collaborator at Technical University of Munich (TUM): Nikola Tchipev.
● TCEs at Intel: Heinrich Bockhorst, Klaus-Dieter Oertel.

● Thanks to the IXPUG community for useful discussion.
● Special thanks to Colfax Research for granting access to their computing facilities.

More details: Baruffa, F., Iapichino, L., Karakasis, V., Hammer, N.J.: Performance optimisation of
Smoothed Particle Hydrodynamics algorithms for multi/many-core architectures. 2017, proceedings of
the 2017 International Conference on High Performance Computing & Simulation (HPCS 2017), 381.
Awarded as Outstanding Paper (runner-up). DOI: 10.1109/HPCS.2017.64. arXiv: 1612.06090.

To contact me: luigi.iapichino@lrz.de

15

Back-up:
Back-porting the kernel optimizations to the full code

● To ease the back-porting, we defined a new Gadget test problem with a simplified
but representative workload (2 * 64³ particles).

● From a physical viewpoint, this workload probes
advanced phases of the galaxy evolution
(inter-galactic medium is strongly clumped).

● Computationally, a reduced effort
for finding particle neighbors!

● Improvement in execution time:
2.3x on Broadwell (Xeon E5-2699v4,
22 cores/socket), 5.3x on KNL. It was
4.7x and 19.1x for the old workload.

Back-porting

16

Back-up: removing lock contention

Subfind algorithm

todo_partlist = partlist;

while(partlist.length){
 error=0;
 #pragma omp parallel for schedule(dynamic)
 for(auto p:todo_partlist){
 if(something_is_wrog) error=1;
 ngblist = find_neighbours(p);
 sort(ngblist);
 for(auto n:select(ngblist,K))
 compute_interaction(p,n);
 }

//...check for any error
 todo_particles = mark_for_recomputation(partlist);
}

creating a todo particle list

iterations over the todo list
(private ngblist)

actual computation

No-checks for computation

17

Back-up: some more KNL wisdom

● Quad-cache is a good starting point, quad-flat with allocation on
MCDRAM is worth being tested, SNC modes are for very advanced
developers.

● It is unlikely to gain performance with more than 2 threads/core.

● Vectorize whenever possible, use compiler reports and tools to exploit
low-hanging fruits.

● Know where your data are located and how they move.

● If optimizations are portable, the effort pays off!

Experiences on KNL

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17

