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Outline of the talk

Overview of the code: P-Gadget3.

Modernization of a code kernel.

Back-porting to the full code. ‘-nn

Optimization steps on Knights Landing (KNL).

Performance results, takeaways from our KNL experience. -

Simulation details:
www.magneticum.org




Gadget intro

* Leading application for simulating the formation of
the cosmological large-scale structure (galaxies and
clusters) and of processes at sub-resolution scale
(e.g. star formation, metal enrichment).
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« First developed in the late 90s as
serial code, later evolved as an MP]
and a hybrid code.

« Good scaling performance up to
O(100k) Xeon cores (SuperMUC@LRZ).

Simulation details:
www.magneticum.org




Previous optimization work

(Baruffa, lapichino, Hammer & Karakasis, proceedings of HPCS 2017)

* The representative code kernel subfind density was isolated and run as

a stand-alone application, avoiding the overhead from the whole simulation.
Focus on node-level performance, through minimally invasive changes.

We use tools from the Intel® Parallel Studio XE (VITune Amplifier and Advisor).
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Code optimizazion through:
> Better threading parallelism;
> Data optimization (A0S — S0A);
> Promoting more efficient vectorization.

Exec. Time [s]

Up to 19x faster execution on KNL.
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https://arxiv.org/abs/1612.06090

Modernizing the threading parallelism of the isolated

kernel
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e Severe shared-memory
parallelization overhead

« At later iterations, the
particle list is locked and
unlocked constantly due
to the recomputation

e Spinning time 41%
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Improved performance
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e Lockless scheme: lock
contention removed
through "todo" particle
list and OpenMP
dynamic scheduling.

« Time spent in spinning
only 3%
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Improved speed-up of the isolated kernel on KNL

« Knights Landing Processor 7210 @ 1.3 GHz,
64 cores. KMP Affinity: scatter;
Configuration Quadrant/Flat.

e On KNL @ 64 threads:
> speed-up wrt original version: 5.7x
> parallel efficiency: /3%

» Crucial for target performance: OpenMP
threads per MPI task on the full code? On 16

threads on KNL, speed-up improvement 2.3X.

« Remark: the back-porting is based on a
different physical workload, where the
performance gain is lower (let's discuss this
later...)

e—e original
e-e optimized
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Guideline for the optimization on KNL

Optimization for KNL seen as a three-step process:

Compilation "out of the
box"

Optimization without
coding (use of AVX512,
explore configuration,
MCDRAM, MPI/OpenMP)

Optimization with coding 1-3 months (IPCC: 2

1 hour

1 week

years)

Lower than Haswell
(~ 1.5x%)

Up to 2x over previous
step

Up to the level of
Broadwell

Freely adapted from Leijun Hu,
Inspur @ ISC 2017



Back-porting: development steps on KNL

Original "Out-of-the-box" default
environment, v. 2016 Intel
compiler and libraries, no
KNL-specific flags.

Step O v. 2018 Intel compiler and The code does not benefit
libraries, -xMIC-AVX512. from specific cluster or
memory modes.

Optimized Threading parallelism MPI/OpenMP configuration
Improved in subfind density. set by target, not by optimal
Other minor improvements.  performance.

Freely adapted from Leijun Hu,
Inspur @ ISC 2017




Performance results

One-node tests, performed on an Intel Xeon Phi (KNL) 7210 @ 1.30GHz with 64 cores.
Configuration: Quad/flat with allocation on DDR. 4 MPI tasks, 16 OpenMP threads each.

Original 167.4 22.6 (13.5%)
Step 0 142 1 17.1(12.1%)
Optimized 137.1 12.7 (9.3%)
1.2X 1.8x (isolated kernel: it
was 1.4X)

11 Freely adapted from Leijun Hu,
Inspur @ ISC 2017




Understanding results and performance targets
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« Based on our experience 4-8 MPI
tasks per KNL should be optimal.

64

32

« A complete back-porting should
improve the OpenMP layer and move
the best performance to the left.
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« For comparison: currently the best
performance on a Haswell node ]
Is for the pure-MPI case!

e Best performance KNL: 53.2s (total),

10.8s (subfind density, 20.3%). )
e Best performance HSW: 42 .65 (total), 4 E T e
11.4s (subfind density, 26.7%). Parameter study of the MPI / OpenMP ratio on a KNL node,




Summary and outlook

* Along the described development steps, performance improvement on KNL Is 1.2x
for the whole code, 1.8x for the optimized kernel subfind density.

* Improvements are portable also on Xeon (ongoing tests on newer versions).

 The improvement of subfind density is in line with predictions based on the isolated
kernel (1.4x), thus verifying our approach.

* Performance gap with Haswell: the original code was 1.7x slower on KNL, the
optimized is 1 3x slower. For subfind density: the original version was 1.50x
slower on KNL, the optimized one only 1.16x slower — closing the gap!

 Room for further improvement?

- Complete back-porting of further steps (data layout, vectorisation);
~ Back-port to other two major routines (~70% total time);
~ Explore and modernize also the MPI layer of the code,
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Back-up:

Back-porting the kernel optimizations to the full code

« [0 ease the back-porting, we defined a new Gadget test problem with a simplified

but representative workload (2 * 642 particles).

128

« From a physical viewpoint, this workload |orobe§4

advanced phases of the galaxy evolution

(Inter-galactic medium is strongly clumped). =

« Computationally, a reduced effort 1

for finding particle neighbors!

speedup

* Improvement in execution time:
2.3x on Broadwell (Xeon E5-2699v4,
22 cores/socket), 5.3x on KNL. It was
4. 7x and 19.1x for the old workload.
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Back-up: removing lock contention

todo_partlist = partlist; - creating a todo particle list

while(partlist.length) {

error=0;

Hpragma omp parallel for schedule(dynamic)

for(auto p:todo_partlist) { “————— terations over the todo list
if (something_is_wrog) error=1; (private ngblist)

ngblist = find neighbours (p) ;

sort (ngblist) ;

for(auto n:select (ngblist,K))
compute_ interaction (p,n) ; —— actual computation

}

LNo-checks for computation J
//...check for any error

todo_particles = mark for recomputation (partlist) ;

}




Back-up: some more KNL wisdom

Quad-cache Is a good starting point, quad-flat with allocation on
MCDRAM is worth being tested, SNC modes are for very advanced
developers.

It Is unlikely to gain performance with more than 2 threads/core.

Vectorize whenever possible, use compiler reports and tools to exploit
low-hanging fruits.

Know where your data are located and how they move.

If optimizations are portable, the effort pays off!
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