Leibniz-Rechenzentrum

der Bayerischen Akademie der Wissenschaften

Performance optimization of the Smoothed Particle
Hydrodynamics code Gadget3 on 2" generation Intel Xeon Phi

Dr. Luigi lapichino Juigi.iapichino@lrz.de

Lelbniz Supercomputing Centre

Supercomputing 2017 Intel® Parallel
Intel booth, Nerve Center Computing Center

mailto:luigi.iapichino@lrz.de

Work main contributors

Dr. Luigi lapichino e Some of the results shown
Scientific Computing Expert here are based on work

Leibniz Supercomputing Centre performed with
Dr. Fabio Baruffa (now at Intel)

NS

« Member of the Intel Parallel
Computing Center (IPCC) @
LRZ/TUM

« Expert in computational
astrophysics and simulations

mailto:luigi.iapichino@lrz.de

Outline of the talk

Overview of the code: P-Gadget3.

Modernization of a code kernel.

Back-porting to the full code. ‘-nn

Optimization steps on Knights Landing (KNL).

Performance results, takeaways from our KNL experience. -

Simulation details:
www.magneticum.org

Gadget intro

* Leading application for simulating the formation of
the cosmological large-scale structure (galaxies and
clusters) and of processes at sub-resolution scale
(e.g. star formation, metal enrichment).

a_,-f' 2
. ggal|cl>aava|lable, cosmological TreePM N-body + - Ty
code. - Bl o

« First developed in the late 90s as
serial code, later evolved as an MP]
and a hybrid code.

« Good scaling performance up to
O(100k) Xeon cores (SuperMUC@LRZ).

Simulation details:
www.magneticum.org

Previous optimization work

(Baruffa, lapichino, Hammer & Karakasis, proceedings of HPCS 2017)

* The representative code kernel subfind density was isolated and run as

a stand-alone application, avoiding the overhead from the whole simulation.
Focus on node-level performance, through minimally invasive changes.

We use tools from the Intel® Parallel Studio XE (VITune Amplifier and Advisor).

I VB

N HSW
BN KNC
I KNL
[BDW

Code optimizazion through:
> Better threading parallelism;
> Data optimization (A0S — S0A);
> Promoting more efficient vectorization.

Exec. Time [s]

Up to 19x faster execution on KNL.

Op[5

Or@ =

https://arxiv.org/abs/1612.06090

Modernizing the threading parallelism of the isolated

kernel

&l <no current project> - Intel WTune Amplifier _Ox
i =
A% Basic Hotspots H

~

=

Bl Platform

wn Tree

B Collection Log | | 8 Analysis

Grouping: \ Functian / Call Stack

CPUTime ¥
Function/ Call Stack Effective Time by Utilization » | Spin Time « | Overhead Time
Qidle @Poor [Ok @Ideal @ Over Other

p __kmpc_critical_with_hint 0s 2.0... I

p subfind_ngb_treefind_linkngb_threads_orig 21.749s |0

b gsort_r 11.452z | 0s Os Os Os Os Os Os Os

b subfind_ngh_compare_dist 8.208s | Os Os 0s 0s 0s 0s Os 0s

p __kmp_fork_barrier 0s 15.. 0s 00445 0s 0Os 05 Os 0s

Pk subfind_density_evaluate_orig 1.520s @ Os Os Os Os Os Os Os Os

b kernel_main 1.482s |0 Os Os Os Os Os Os Os Os

F __kmp_release_queuing_lock Os 0s 1.1. Os 0s Os Os Os Os

» subfind_density_evaluate_primary_orig 0.964s @ 0s 0Os 0s 0s 0s 0s Os 0s

- e e, | e

(QFC-(1® = ©0Bs s 18s 25 28s 35 35s &s 455 G5 555 6 655 7s 755 85 855 95 955 10s 1085 11- 1185 125 Thimad V)

OMP Waker Thre . (] ik cPU Time
OMP Watker Thre... Ul Spin and Ov...

e Severe shared-memory
parallelization overhead

« At later iterations, the
particle list is locked and
unlocked constantly due
to the recomputation

e Spinning time 41%

Thread

[]® cPu sample
OMP Warker Thre...

OMP Waker Thre [cPu usage

OMP Worker Thre... S T N 5T T T A, Vo i B

S T T T W [T T P P R AT (i
T S S N 0 IO A A] i
OMP Wolker Thre. . | T 1700 Y O A [
T Dl T i T
1 TV 1 WP TP P T T A

thread spinning

Improved performance

&l <no current project> - Intel WTune Amplifier
i o =

(85| Basic Hotspots H

ks 5

i ion Log Iy y y y
Grouping: | Function / Call Stack N g [a]
bt
Function / Call Stack Effective Time by Utilization L |
Qldle @Poor [Ok @ Ideal @ Over Imbalance or Serial Spin

p subfind_ngh_treefind_linkngb_threg
p gsort_r

11.310s | D
g.040s | (D

15945 (@D

1.514s @

b subfind_ngh_compare_dist
b kernel_main
p subfind_density_evaluate_orig

[CPUTime Sl

Viewing ¢ 1of1 [selected stackis)
[100.0% (21.7145 of 21 714s) |

ipcc_kernels_openmp_ivh_noveclsubfin...
ipcc_kernels_openmp_ivb_noveclsubfin...
ipcc_kernels_openmp_ivh_noveclsubfin...

ipcc_kernels_openmp_ivh_noveclsubfin...

libiomp=.sol[OpeniP dispatcher+0x86. ..
libiompS.sol__kmp_fork_call+0xf7 - km...

b _kmp_fork_barier os liniornpS. sol[OpeniP fork]+0xd7 - kmp..
b kemel_hiny 0.652s @ ipcc_kernels_openmp_ivb_noveclsubfin...
» subfind_density_orig 0.247s | ipcc_kernels_openmp_ivh_noveclmain+t. ..
P [OpeniP dispatcher] 0s libc.so.61__libc_start_main+OxesS - [unk. .
P _kmp_api_omp_get_witime Os ipcc_kernels_openmp_ivh_novec!_start. .
L L I L L L L L L I | —_—
(ool Jellel] . .1?5. o .12(55. o .1?5. o I13I.5sl o I‘I?s‘ o .”.'55‘ o .1575. o .15.'55‘ o .1?5. o .16.'55. o .175. Y 4 .1'.55. L]| Thiead |V|
OMP Master Thre..| [S B AN W g
OMP Woker Thve | | N T SRR 0 GO
£ lowp woker Thve | | S S N R R % cpu sampie
owp wekerTve .| | T S R . R M| Y e
OMP Woker Trve..| | IR, A A

e Lockless scheme: lock
contention removed
through "todo" particle
list and OpenMP
dynamic scheduling.

« Time spent in spinning
only 3%

(] T R
[

AnyThread < AnyModuIe o

no spinning

Improved speed-up of the isolated kernel on KNL

« Knights Landing Processor 7210 @ 1.3 GHz,
64 cores. KMP Affinity: scatter;
Configuration Quadrant/Flat.

e On KNL @ 64 threads:
> speed-up wrt original version: 5.7x
> parallel efficiency: /3%

» Crucial for target performance: OpenMP
threads per MPI task on the full code? On 16

threads on KNL, speed-up improvement 2.3X.

« Remark: the back-porting is based on a
different physical workload, where the
performance gain is lower (let's discuss this
later...)

e—e original
e-e optimized

|
16 64 256

number of threads

Guideline for the optimization on KNL

Optimization for KNL seen as a three-step process:

Compilation "out of the
box"

Optimization without
coding (use of AVX512,
explore configuration,
MCDRAM, MPI/OpenMP)

Optimization with coding 1-3 months (IPCC: 2

1 hour

1 week

years)

Lower than Haswell
(~ 1.5x%)

Up to 2x over previous
step

Up to the level of
Broadwell

Freely adapted from Leijun Hu,
Inspur @ ISC 2017

Back-porting: development steps on KNL

Original "Out-of-the-box" default
environment, v. 2016 Intel
compiler and libraries, no
KNL-specific flags.

Step O v. 2018 Intel compiler and The code does not benefit
libraries, -xMIC-AVX512. from specific cluster or
memory modes.

Optimized Threading parallelism MPI/OpenMP configuration
Improved in subfind density. set by target, not by optimal
Other minor improvements. performance.

Freely adapted from Leijun Hu,
Inspur @ ISC 2017

Performance results

One-node tests, performed on an Intel Xeon Phi (KNL) 7210 @ 1.30GHz with 64 cores.
Configuration: Quad/flat with allocation on DDR. 4 MPI tasks, 16 OpenMP threads each.

Original 167.4 22.6 (13.5%)
Step 0 142 1 17.1(12.1%)
Optimized 137.1 12.7 (9.3%)
1.2X 1.8x (isolated kernel: it
was 1.4X)

11 Freely adapted from Leijun Hu,
Inspur @ ISC 2017

Understanding results and performance targets

1000

« Based on our experience 4-8 MPI
tasks per KNL should be optimal.

64

32

« A complete back-porting should
improve the OpenMP layer and move
the best performance to the left.

[
a

#OMP Threads
[e+]
g

Exec. Time [s]

« For comparison: currently the best
performance on a Haswell node]
Is for the pure-MPI case!

e Best performance KNL: 53.2s (total),

10.8s (subfind density, 20.3%).)
e Best performance HSW: 42 .65 (total), 4 E T e
11.4s (subfind density, 26.7%). Parameter study of the MPI / OpenMP ratio on a KNL node,

Summary and outlook

* Along the described development steps, performance improvement on KNL Is 1.2x
for the whole code, 1.8x for the optimized kernel subfind density.

* Improvements are portable also on Xeon (ongoing tests on newer versions).

 The improvement of subfind density is in line with predictions based on the isolated
kernel (1.4x), thus verifying our approach.

* Performance gap with Haswell: the original code was 1.7x slower on KNL, the
optimized is 1 3x slower. For subfind density: the original version was 1.50x
slower on KNL, the optimized one only 1.16x slower — closing the gap!

 Room for further improvement?

- Complete back-porting of further steps (data layout, vectorisation);
~ Back-port to other two major routines (~70% total time);
~ Explore and modernize also the MPI layer of the code,

Acknowledgements

* Research supported by the Intel® Parallel Computing Center program.
 P-Gadget3 developers: Klaus Dolag, Margarita Petkova, Antonio Ragagnin.

* Research collaborator at Technical University of Munich (TUM): Nikola Tchipev.

* TCEs at Intel: Heinrich Bockhorst, Klaus-Dieter Oertel.

 Thanks to the IXPUG community for useful discussion.

* Special thanks to Colfax Research for granting access to their computing facilities.

More details: Baruffa, F., lapichino, L., Karakasis, V., Hammer, N.).. Performance optimisation of
Smoothed Particle Hydrodynamics algorithms for multi/ymany-core architectures. 2017, proceedings of
the 2017 International Conference on High Performance Computing & Simulation (HPCS 2017), 381.
Awarded as Outstanding Paper (runner-up). DOIl: 10.1109/HPCS.2017.64. arXiv: 1612.06090.

Back-up:

Back-porting the kernel optimizations to the full code

« [0 ease the back-porting, we defined a new Gadget test problem with a simplified

but representative workload (2 * 642 particles).

128

« From a physical viewpoint, this workload |orobe§4

advanced phases of the galaxy evolution

(Inter-galactic medium is strongly clumped). =

« Computationally, a reduced effort 1

for finding particle neighbors!

speedup

* Improvement in execution time:
2.3x on Broadwell (Xeon E5-2699v4,
22 cores/socket), 5.3x on KNL. It was
4. 7x and 19.1x for the old workload.

I

| I

@® @ BDW - original
@@ BDW - optimised
@ @ KNL - original

@—® KNL - optimised

I

8 16 32 64

threads

Back-up: removing lock contention

todo_partlist = partlist; - creating a todo particle list

while(partlist.length) {

error=0;

Hpragma omp parallel for schedule(dynamic)

for(auto p:todo_partlist) { “————— terations over the todo list
if (something_is_wrog) error=1; (private ngblist)

ngblist = find neighbours (p) ;

sort (ngblist) ;

for(auto n:select (ngblist,K))
compute_ interaction (p,n) ; —— actual computation

}

LNo-checks for computation J
//...check for any error

todo_particles = mark for recomputation (partlist) ;

}

Back-up: some more KNL wisdom

Quad-cache Is a good starting point, quad-flat with allocation on
MCDRAM is worth being tested, SNC modes are for very advanced
developers.

It Is unlikely to gain performance with more than 2 threads/core.

Vectorize whenever possible, use compiler reports and tools to exploit
low-hanging fruits.

Know where your data are located and how they move.

If optimizations are portable, the effort pays off!

I

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17

