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Work main contributors

● Member of the Intel Parallel 
Computing Center (IPCC) @ 
LRZ/TUM

● Expert in computational 
astrophysics and simulations

Dr. Luigi Iapichino
Scientific Computing Expert 
Leibniz Supercomputing Centre

Email: luigi.iapichino@lrz.de. WWW: http://iapichino.userweb.mwn.de 

● Some of the results shown 
here are based on work 
performed with                     
Dr. Fabio Baruffa (now at Intel) 
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Outline of the talk

● Overview of the code: P-Gadget3.

● Modernization of a code kernel.

● Back-porting to the full code.

● Optimization steps on Knights Landing (KNL).

● Performance results, takeaways from our KNL experience.

Simulation details: 
www.magneticum.org
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Gadget intro

● Leading application for simulating the formation of 
the cosmological large-scale structure (galaxies and 
clusters) and of processes at sub-resolution scale 
(e.g. star formation, metal enrichment).

● Publicly available, cosmological TreePM N-body + 
SPH code.

● First developed in the late 90s as                         
serial code, later evolved as an MPI                             
and a hybrid code.

● Good scaling performance up to                       
O(100k) Xeon cores (SuperMUC@LRZ).

Introduction
Simulation details: 
www.magneticum.org
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Previous optimization work 
(Baruffa, Iapichino, Hammer & Karakasis, proceedings of HPCS 2017)

● The representative code kernel subfind_density was isolated and run as
a stand-alone application, avoiding the overhead from the whole simulation.

● Focus on node-level performance, through minimally invasive changes. 

● We use tools from the Intel® Parallel Studio XE (VTune Amplifier and Advisor).

● Code optimizazion through:
➢ Better threading parallelism;
➢ Data optimization (AoS → SoA);
➢ Promoting more efficient vectorization.

● Up to 19x faster execution on KNL.

 
Also available as: https://arxiv.org/abs/1612.06090

https://arxiv.org/abs/1612.06090
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Modernizing the threading parallelism of the isolated 
kernel

Multi-threading parallelism

thread spinning

● Severe shared-memory 
parallelization overhead

● At later iterations, the 
particle list is locked and 
unlocked constantly due 
to the recomputation

● Spinning time 41%
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Improved performance

Multi-threading parallelism

no spinning

● Lockless scheme: lock 
contention removed 
through “todo” particle 
list and OpenMP 
dynamic scheduling. 

● Time spent in spinning 
only 3%
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Improved speed-up of the isolated kernel on KNL 

Multi-threading parallelism

● Knights Landing  Processor 7210 @ 1.3 GHz, 
64 cores. KMP Affinity: scatter; 
Configuration Quadrant/Flat.

● On KNL @ 64 threads:
➢ speed-up wrt original version: 5.7x
➢ parallel efficiency: 73%

● Crucial for target performance: OpenMP 
threads per MPI task on the full code? On 16 
threads on KNL, speed-up improvement 2.3x.

● Remark: the back-porting is based on a 
different physical workload, where the 
performance gain is lower (let’s discuss this 
later...) 
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Guideline for the optimization on KNL 

Back-porting

Optimization for KNL seen as a three-step process:

Step Effort Expected performance

Compilation “out of the 
box”

1 hour Lower than Haswell      
(~ 1.5x)

Optimization without 
coding (use of AVX512, 
explore configuration, 
MCDRAM, MPI/OpenMP)

1 week Up to 2x over previous 
step

Optimization with coding 1-3 months (IPCC: 2 
years)

Up to the level of 
Broadwell

Freely adapted from Leijun Hu, 
Inspur @ ISC 2017
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Back-porting: development steps on KNL 

Back-porting

Code version Description Notes

Original “Out-of-the-box” default 
environment, v. 2016 Intel 
compiler and libraries, no 
KNL-specific flags.

Step 0 v. 2018 Intel compiler and 
libraries, -xMIC-AVX512.

The code does not benefit 
from specific cluster or 
memory modes. 

Optimized Threading parallelism 
improved in subfind_density.
Other minor improvements.

MPI/OpenMP configuration 
set by target, not by optimal 
performance.

Freely adapted from Leijun Hu, 
Inspur @ ISC 2017
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Performance results 

Results

Code version Time (total) [s] Time (subfind_density) 
[s], % of total

Original 167.4 22.6 (13.5%)

Step 0 142.1 17.1 (12.1%) 

Optimized 137.1
1.2x 

12.7 (9.3%)
1.8x (isolated kernel: it 
was 1.4x)

Freely adapted from Leijun Hu, 
Inspur @ ISC 2017

One-node tests, performed on an Intel Xeon Phi (KNL) 7210 @ 1.30GHz with 64 cores.
Configuration: Quad/flat with allocation on DDR. 4 MPI tasks, 16 OpenMP threads each.
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Understanding results and performance targets

● Based on our experience 4-8 MPI 
tasks per KNL should be optimal.

● A complete back-porting should 
improve the OpenMP layer and move 
the best performance to the left.

● For comparison: currently the best 
performance on a Haswell node       
is for the pure-MPI case!

● Best performance KNL: 53.2s (total), 
10.8s (subfind_density, 20.3%).

● Best performance HSW: 42.6s (total), 
11.4s (subfind_density, 26.7%). Parameter study of the MPI / OpenMP ratio on a KNL node.

Results



13

Summary and outlook
● Along the described development steps, performance improvement on KNL is 1.2x 

for the whole code, 1.8x for the optimized kernel subfind_density. 

● Improvements are portable also on Xeon (ongoing tests on newer versions).
● The improvement of subfind_density is in line with predictions based on the isolated 

kernel (1.4x), thus verifying our approach.

● Performance gap with Haswell: the original code was 1.7x slower on KNL, the 
optimized is 1.3x slower. For subfind_density: the original version was 1.50x 
slower on KNL, the optimized one only 1.16x slower → closing the gap!

● Room for further improvement?
➢ Complete back-porting of further steps (data layout, vectorisation);
➢ Back-port to other two major routines (~70% total time);
➢ Explore and modernize also the MPI layer of the code. 

More information: www.lrz.de/services/compute/labs/astrolab/ipcc
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Back-up:
Back-porting the kernel optimizations to the full code

● To ease the back-porting, we defined a new Gadget test problem with a simplified 
but representative workload (2 * 64³ particles).

● From a physical viewpoint, this workload probes                                                     
advanced phases of the galaxy evolution                                                            
(inter-galactic medium is strongly clumped). 

● Computationally, a reduced effort                                                                            
for finding particle neighbors!

● Improvement in execution time:                                                                                 
2.3x on Broadwell (Xeon E5-2699v4,                                                                        
22 cores/socket), 5.3x on KNL. It was                                                                          
4.7x and 19.1x for the old workload.

 

Back-porting
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Back-up: removing lock contention

Subfind algorithm

todo_partlist = partlist;

while(partlist.length){
  error=0;
  #pragma omp parallel for schedule(dynamic)
  for(auto p:todo_partlist){
    if(something_is_wrog) error=1;
    ngblist = find_neighbours(p);
    sort(ngblist);
    for(auto n:select(ngblist,K)) 
       compute_interaction(p,n);
  }

//...check for any error
  todo_particles = mark_for_recomputation(partlist);
}

creating a todo particle list

iterations over the todo list 
(private ngblist)

actual computation

No-checks for computation
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Back-up: some more KNL wisdom

● Quad-cache is a good starting point, quad-flat with allocation on 
MCDRAM is worth being tested, SNC modes are for very advanced 
developers.

● It is unlikely to gain performance with more than 2 threads/core.

● Vectorize whenever possible, use compiler reports and tools to exploit 
low-hanging fruits.

● Know where your data are located and how they move.

● If optimizations are portable, the effort pays off! 

Experiences on KNL
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