Login from PC: 1st exercise (on Altix UV)

Login at PC

- Power on your PC (if off)
- PC will **automatically** log you into local course account
 - this account is different from the account used on parallel machine!
- Auf Desktop in "Ordner für Datentransfers":
 - Click on Xming to start X Windows Server (necessary for opening console or editor windows from Altix server)
 - Click on **Putty** to start ssh session
 - Click on Matlab to start Matlab session

Login on Altix compute server:

- Enter host name LXLogin2.LRZ.de (or LXLogin[1|3|4].LRZ.de) into Putty host field and click Open.
- Accept & save host key [only first time]
- Enter user name (*a2c06aa*) and password (*see white board*) into opened console window
- Start an **xterm**
- On this xterm, go to the Altix UV with ssh -Y uv2
- Open additional console by entering xterm & in original console

Your working directory:

cd <wdir>/<u>number of PC</u> <u>with leading zero</u>

Settings for <*wdir*> are given on the next slides

Parallel Programming Workshop Rolf Rabenseifner Folie 1

MPI on SGI Altix UltraViolet at LRZ, Garching/Munich

Login from PC: 2nd exercise (SuperMIC)

Login on SuperMIC frontend:

- Enter host name training.srv.mwn.de into Putty host field and click Open.
- Accept & save host key [only first time]
- Enter user name (*a2c06aa*) and password (*see white board*) into opened console window
- Start an **xterm**
- On this xterm, go to the SuperMIC with ssh -Y supermic.smuc.lrz.de
- Open additional console by entering xterm &

in original console

Your working directory:

cd <wdir>/<u>number of PC</u> <u>with leading zero</u>

Parallel Programming Workshop Rolf Rabenseifner Folie 8

Add in .bshrc before course: source /etc/profile.d/modules.sh

SuperMIC requires a batch job:

- Generate SSH key pair without passphrase: ssh-keygen
- Submit 1-node sleep job with: cp ~/MPIOMP/course/job.Il ./ Ilsubmit job.Il (5 hours; for more,adapt script)
- Monitor job with:
 IIq –u \$USER and find out the node name
- Log into node: ssh <node-name-without-ib>
- Compiling works only on the frontend; compile your code on the frontend and run it on the node
- module load likwid/4.0 for likwid

Pure MPI pinning (Intel MPI) – selection

- I_MPI_PIN={0,1}
 Switch off/on MPI affinity (default = on)
- I_MPI_PIN_PROCESSOR_LIST=<proclist> Set core IDs to run on.

Example:

I_MPI_PIN_PROCESSOR_LIST=0-7 # 1st socket on SuperMIC

I_MPI_DEBUG=4
 Print (among other things) process-to-core mapping

Intel MPI+OpenMP hybrid pinning – selection

Define a "domain" for the multi-threaded MPI processes:

- I_MPI_DOMAIN=...
 - core | socket | node | cache
 MPI process spans the specified entity (cache=largest cache)
 - omp[:[scatter | compact]]
 MPI process spans as many logical cores as
 OMP_NUM_THREADS, with scattered or compact distribution
 - <n>[:[scatter | compact]]
 ditto, but the number of logical cores is n
 - [m₁,...,m_n] (brackets included) specify for each MPI process a bit mask (in hexadecimal), numbering according to BIOS. Example: [0x000F,0x00F0,0x0F00,0xF000]
 → this provides full control!

Intel KMP_AFFINITY environment variable: Pinning OpenMP

KMP AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>] modifier type (required) granularity=<specifier> takes the compact following specifiers: fine, thread, disabled and core explicit (GOMP_CPU_AFFINITY) norespect none noverbose scatter proclist={<proc-list>} respect **OS processor IDs** verbose **Respect an OS affinity** mask in place **Default:** noverbose, respect, granularity=core to list machine topology map KMP AFFINITY=verbose, none

Parallel Programming Workshop Rolf Rabenseifner Folie 11

Intel KMP_AFFINITY examples

Example: 1 MPI process per socket

32kB 32kB 32kB 32kB 32kB 32kB	32kB 32kB 32kB 32kB 32kB 32kB
256kB 256kB 256kB 256kB 256kB 256kB	256kB 256kB 256kB 256kB 256kB 256kB
12 MB	12 MB
32kB 32kB 32kB 32kB 32kB 32kB	32kB 32kB 32kB 32kB 32kB 32kB
256kB 256kB 256kB 256kB 256kB 256kB	256kB 256kB 256kB 256kB 256kB 256kB
	12 MB
12 MB	

Intel MPI+compiler:

OMP_NUM_THREADS=6 mpirun -ppn 2 -np 4 \

-env I_MPI_PIN_DOMAIN socket -env KMP_AFFINITY scatter ./a.out
Parallel Programming Workshop Rolf Rabenseifner
Folie 16