
ISO/IEC JTC1/SC22/WG5 N1787

Coarrays in the next Fortran Standard

John Reid, JKR Associates, UK

June 15, 2009

Abstract

The WG5 committee, at its meeting in Delft, May 2005, decided to include coarrays in the
next Fortran Standard. A Fortran Forum article in August 2005 explained the feature, but
because many of the details have been changed since then and the features have been split
into a core set that is intended for Fortran 2008 and further features that will be defined in
a Technical Report, it seems appropriate to describe it afresh. Only the core set is described
here. This article is not an official document and has not been approved by PL22.3 (formerly
J3) or WG5.

A Fortran program containing coarrays is interpreted as if it were replicated a fixed number
of times and all copies were executed asynchronously. Each copy has its own set of data
objects and is called an image. The array syntax of Fortran is extended with additional
trailing subscripts in square brackets to give a clear and straightforward representation of
access to data on other images.

References without square brackets are to local data, so code that can run independently is
uncluttered. Any occurrence of square brackets is a warning about communication between
images.

The additional syntax requires support in the compiler, but it has been designed to be easy
to implement and to give the compiler scope both to apply its optimizations within each
image and to optimize the communication between images.

The extension includes statements for synchronizing images and intrinsic procedures to return
the number of images and the index of the current image.

1

2 ISO/IEC JTC1/SC22/WG5 N1787

Contents

1 Introduction 4

2 Referencing images 6

3 Specifying data objects 6

4 Accessing data objects 8

5 Coarrays in procedures 9

6 Volatility 11

7 Interoperability 12

8 Storage association 12

9 Allocatable coarrays 12

10 Restrictions on intrinsic assignment for coarrays 13

11 Coarrays with allocatable or pointer components 13

12 Synchronization 15

12.1 sync all statement . 15

12.2 Execution segments . 16

12.3 The sync images statement . 17

12.4 The lock and unlock statements . 18

12.5 The sync memory statement . 20

12.6 stat= and errmsg= specifiers in synchronization statements 21

12.7 Critical sections . 21

12.8 The image control statements . 21

13 Program termination 22

13.1 Example of normal and error termination . 23

ISO/IEC JTC1/SC22/WG5 N1787 3

14 Input/output 23

15 Intrinsic procedures 25

15.1 Inquiry functions . 25

15.2 Image index functions . 25

15.3 Atomic subroutines . 26

16 Acknowledgements 26

17 References 26

18 Appendix: Changes from the Fortran Forum article of 2005 28

4 ISO/IEC JTC1/SC22/WG5 N1787

1 Introduction

Coarrays were designed to answer the question ‘What is the smallest change required to convert
Fortran into a robust and efficient parallel language?’. Our answer is a simple syntactic extension.
It looks and feels like Fortran and requires Fortran programmers to learn only a few new rules.
These rules are related to two fundamental issues that any parallel programming model must
resolve, work distribution and data distribution.

First, consider work distribution. The coarray extension adopts the Single-Program-Multiple-
Data (SPMD) programming model. A single program is replicated a fixed number of times,
each replication having its own set of data objects. Each replication of the program is called an
image. The number of images may be the same as the number of physical processors, or it may
be more, or it may be less. A particular implementation may permit the number of images to be
chosen at compile time, at link time, or at execute time. Each image executes asynchronously
and the normal rules of Fortran apply. The execution sequence may differ from image to image as
specified by the programmer who, with the help of a unique image index, determines the actual
path using normal Fortran control constructs and explicit synchronizations. For code between
synchronizations, the compiler is free to use almost all its normal optimization techniques as if
only one image were present. In particular, code motion optimizations may be applied within
a segment, provided calls of atomic subroutines (Section 15.3) are not involved. An example of
an optimization that is not available is shown in at the end of Subsection 12.2.

At least in early implementations, it is expected that each image will execute the same executable
code (e.g., a.out or .exe file) on identical hardware.

Second, consider data distribution. The coarray extension allows the programmer to express
data distribution by specifying the relationship among memory images in a syntax very much
like normal Fortran array syntax. Objects with the new syntax have an important property: as
well as having access to the local object, each image may access the corresponding object on
any other image. For example, the statement

real, dimension(1000), codimension[*] :: x,y

declares two objects x and y, each as a coarray. A coarray always has the same shape on each
image. In this example, each image has two real coarrays of size 1000. If an image executes the
statement:

x(:) = y(:)[q]

the coarray y on image q is copied into coarray x on the executing image.

Array indices in parentheses follow the normal Fortran rules within one image. Coarray indices
in square brackets provide an equally convenient notation for accessing an object on another
image. Bounds in square brackets in coarray declarations follow the rules of assumed-size arrays
since a coarray always exists on all the images. The upper bound for the last codimension is
never specified, which allows the programmer to write code without knowing the number of
images the code will eventually use.

ISO/IEC JTC1/SC22/WG5 N1787 5

The programmer uses coarray syntax only where it is needed. A reference to a coarray with no
square brackets attached to it is a reference to the object in the memory of the executing image.
Since it is desirable for most references to data objects in a parallel code to be local, coarray
syntax should appear only in isolated parts of the code. If not, the syntax acts as a visual flag
to the programmer that too much communication among images may be taking place. It also
acts as a flag to the compiler to generate code that avoids latency whenever possible.

On a shared-memory machine, a coarray on an image and the corresponding coarrays on other
images may be implemented as a sequence of arrays with evenly spaced starting addresses. On
a distributed-memory machine with one physical processor for each image, a coarray may be
stored from the same virtual address in each physical processor. On any machine, a coarray may
be implemented in such a way that each image can calculate the virtual address of an element
on another image relative to the array start address on that other image.

Because coarrays are integrated into the language, remote references automatically gain the
services of Fortran’s basic data capabilities, including the typing system and automatic type
conversions in assignments, information about structure layout, and even (with some restric-
tions) object-oriented features.

The coarray feature adopted by WG5 was formerly known as Co-Array Fortran, an informal
extension to Fortran 95 by Numrich and Reid (1998). Co-Array Fortran itself was formerly
known as F−−, which evolved from a simple programming model for the CRAY-T3D described
only in internal Technical Reports at Cray Research in the early 1990s. The first informal
definition (Numrich 1997) was restricted to the Fortran 77 language and used a different syntax
to represent coarrays. It was extended to Fortran 90 by Numrich and Steidel (1997) and defined
more precisely for Fortran 95 by Numrich and Reid (1998).

Portions of Co-Array Fortran have been incorporated into the Cray Fortran compiler and various
applications have been converted to the syntax (see, for example, Numrich, Reid, and Kim
1998, Numrich 2005, and Numrich 2006). A portable compiling system for a subset of the
extension has been implemented by Dotsenko, Coarfa, and Mellor-Crummey (2004). It is called
cafc and performs source-to-source transformation of co-array code to Fortran 90 augmented
with communication operations. One instantiation uses the Aggregate Remote Memory Copy
Interface (ARMCI) library for one-sided communication (Nieplocha and Carpenter 1999) and
another uses GASNet (Bonachea 2002). Experience with the use of cafc is related by Coarfa,
Dotsenko, and Mellor-Crummey, Cantonnet, El-Ghazawi, Mohanti, Yao, and Chavarŕıa-Miranda
(2005). They found that on several platforms cafc gave performance comparable with MPI on
the NAS MG, CG, SP, and BT parallel benchmarks (Bailey, Harris, Saphir, van der Wijngaart,
Woo, and Yarrow 1995).

From October 2008, the g951 compiler has supported coarrays as an extension of Fortran 95.
This extension is as defined by the First Committee Draft of Fortran 2008 (WG5 2008). It
involves support for running images across networks through a central program, the ‘G95 Coarray
Console’.

1http://www.g95.org/

6 ISO/IEC JTC1/SC22/WG5 N1787

Reid (2005) proposed that co-arrays be included in the next revision of Fortran, now known
as Fortran 2008. The ISO Fortran Committee agreed to include co-arrays in May 2005, but
made some changes (see Numrich and Reid, 2005) and further changes have been made since
then (see, for example, Numrich and Reid, 2007). The features are now split between a core
set that is intended to be part of Fortran 2008 and further features that will be defined by a
Technical Report. The rest of this article contains a complete description of the core set. For
more extensive discussion and examples, see Numrich and Reid (1998).

2 Referencing images

Data on other images are normally referenced by cosubscripts enclosed in square brackets. Each
set of cosubscripts maps to an image index, which is an integer between one and the number of
images, in the same way as a set of array subscripts maps to a position in array element order.

The number of images may be retrieved through the intrinsic function num images(). On each
image, the image index is available from the intrinsic function this image() with no arguments.
The set of subscript indices that correspond to the current image for a coarray z are available
as this image(z). The image index that corresponds to a set of cosubscript indices sub for a
coarray z is available as image index(z,sub). For example, on image 5, for the array declared
as

real :: z(10,20)[10,0:9,0:*]

this image() has the value 5 and this image(z) has the value (/5,0,0/). For the same
example on image 213, this image(z) has the value (/3,1,2/). On any image, the value of
image index(z, (/5,0,0/)) is 5 and the value of image index(z, (/3,1,2/) is 213.

3 Specifying data objects

Each image has its own set of data objects, all of which may be accessed in the normal Fortran
way. Some objects are declared with codimensions in square brackets immediately following
dimensions in parentheses or in place of them, for example:

real, dimension(20), codimension[20,*] :: a ! An array coarray

real :: c[*], d[*] ! Scalar coarrays

character :: b(20)[20,0:*]

integer :: ib(10)[*]

type(interval) :: s[20,*]

Unless the coarray is allocatable (Section 9), the form for the dimensions in square brackets is
the same as that for the dimensions in parentheses for an assumed-size array. The total number
of subscripts plus cosubscripts is limited to 15.

A coarray on another image may be addressed by using subscripts in square brackets following
any subscripts in parentheses, for example:

ISO/IEC JTC1/SC22/WG5 N1787 7

a(5)[3,7] = ib(5)[3]

d[3] = c

a(:)[2,3] = c[1]

We call any object whose designator includes square brackets a coindexed object. Each
subscript in square brackets must be a scalar integer expression (section subscripts are not
permitted in square brackets). Subscripts in parentheses must be employed whenever the parent
has nonzero rank. For example, a[2,3] is not permitted as a shorthand for a(:)[2,3].

A subobject of a coarray is a coarray if it has no cosubscripts, no vector-valued subscripts, no
allocatable component selection unless the component is a coarray, and no pointer component
selection. These restrictions make it suitable for associating as an actual argument with a dummy
coarray (see Section 5) since they ensure that copy-in copy-out is not needed (this would require
synchronization).

The rank, bounds, extents, size, and shape of a whole coarray are given by the data in
parentheses in its declaration or allocation. Its corank, cobounds, and coextents are given
by the data in square brackets in its declaration or allocation. Any subobject of it that is a
coarray has the same corank, cobounds, and coextents. The cosize of a coarray is always equal
to the number of images. The syntax mirrors that of an assumed-size array in that the final
upper bound is always indicated with an asterisk, but a coarray has a final coextent, a final
upper cobound, and a coshape, which depend on the number of images. For example, when the
number of images is 128, the coarray declared thus

real :: array(10,20)[10,-1:8,0:*]

has rank 2, corank 3, shape (/10,20/); coshape (/10,10,2/); its lower cobounds are 1, -1,

0 and its upper cobounds are 10, 8, 1. Note that the set of cosubscripts [1,1,1] is valid, but
the set [9,1,1] is not since it would correspond to image 129.

A coarray is not permitted to be a constant. This restriction is not necessary, but the feature
would be useless. Each image would hold exactly the same value so there would be no reason
to access its value on another image.

To ensure that data initialization is local (the same on each image), cosubscripts are not per-
mitted in data statements. For example:

real :: a(10)[*]

data a(1) /0.0/ ! Permitted

data a(1)[2] /0.0/ ! Not permitted

A coarray may be allocatable as discussed in Section 9.

A coarray is not permitted to be a pointer, but a coarray may be of a derived type with pointer
or allocatable components as discussed in Section 11.

A derived type is permitted to have a coarray component provided the component is allocatable.
If an object has a coarray component at any level of component selection, each ancestor of the
coarray component must be a non-allocatable, non-pointer, non-coarray scalar. Were we to
allow a coarray of a type with coarray components, we would be confronted with references

8 ISO/IEC JTC1/SC22/WG5 N1787

such as z[p]%x[q]. A logical way to read such an expression would be: go to image p and find
component x on image q. This is logically equivalent to z[q]%x.

It is not permissible to add a coarray component by type extension unless the type already has
one or more coarray components. This ensures that the restrictions that apply to objects of the
extended type also apply to objects of the original type.

To avoid a requirement for a remote image to perform finalization, a coindexed object is not
finalized if it occurs as the left-hand side of an intrinsic assignment or as an actual argument
corresponding to an intent(out) dummy argument.

4 Accessing data objects

Any object reference without square brackets is always a reference to the object on the invoking
image. For example, in

real :: z(20)[20,*], zmax[*]

:

zmax = maxval(z)

the value of the largest element of the coarray z on the executing image is placed in the coarray
zmax on the executing image.

For a reference with square brackets, the cosubscript list must map to a valid image index. For
example, if there are 16 images and the coarray z is declared thus

real :: z(10)[5,*]

then a reference to z(:)[1,4] is valid, since it has cosubscript order value 16, but a reference to
z(:)[2,4] is invalid, since it has cosubscript order value 17. The programmer is responsible for
generating valid cosubscripts. The behaviour of a program that generates an invalid cosubscript
is undefined.

Square brackets attached to objects alert the reader to communication between images. Unless
square brackets appear explicitly, all objects reside on the invoking image. Communication may
take place, however, within a procedure that is referenced, which might be a defined operation
or assignment.

Whether the executing image is selected in square brackets has no bearing on whether the
executing image evaluates the expression or assignment. For example, the statement

z[6] = 1

is executed by every image that encounters it, not just image 6. If code is to be executed
selectively, the Fortran if or case statement is needed. For example, the code in Figure 1
employs the first image to read data and broadcast it to the other images.

ISO/IEC JTC1/SC22/WG5 N1787 9

Figure 1: Read on image 1 and broadcast to the others.

real :: z[*]

...

sync all

if (this_image()==1) then

read(*,*) z

do image = 2, num_images()

z[image] = z

end do

end if

sync all

A coindexed object is permitted in intrinsic operations, intrinsic assignments, and input/output
lists2. It is also permitted in non-intrinsic operations and as an actual argument in a procedure
call. On a distributed-memory machine, it is likely that a local copy of the actual argument will
be made before execution of the procedure starts and if necessary copied back on return. To
allow this, the dummy argument is not permitted to be asynchronous or volatile.

If the dummy argument is neither allocatable nor a pointer, and the actual argument is a
coindexed object with an allocatable ultimate component (coarrays with allocatable or pointer
components are discussed in Section 11), the dummy argument must have the intent in or the
value attribute; this ensures that allocatables are not allocated remotely.

If the actual argument is a coindexed object and the dummy argument is allocatable or a pointer,
the dummy argument must have intent in. Note that in the pointer case, the pointer association
status of the dummy argument will be undefined unless the coindexed actual argument is on the
executing image.

A coindexed object is not permitted as the selector in an associate or select type statement
because that would disguise a reference to a remote image (the associated name is without
square brackets). However, a coarray is permitted as the selector, in which case the associated
entity is also a coarray.

5 Coarrays in procedures

A dummy argument of a procedure is permitted to be a coarray. It may be of explicit shape,
assumed size, assumed shape, or allocatable, see Figure 2.

When the procedure is called, the corresponding actual argument must be a coarray. The
association is with the coarray itself and not with a copy. Making a copy is undesirable because
it would make synchronization necessary on entry and return to ensure that remote access
was not to a copy that does not yet exist or has already been deallocated. Restrictions have

2Apart from polymorphic subobjects, see the end of Section 11.

10 ISO/IEC JTC1/SC22/WG5 N1787

Figure 2: Coarray dummy arguments.

subroutine subr(n,w,x,y,z)

integer :: n

real :: w(n)[n,*] ! Explicit shape

real :: x(n,*)[*] ! Assumed size

real :: y(:,:)[*] ! Assumed shape

real, allocatable :: z(:)[:,:] ! Allocatable

been introduced so that copy-in and/or copy-out is never needed. Furthermore, the interface is
required to be explicit so that the compiler can check adherence to the restrictions. An example
is shown in Figure 3.

Figure 3: An interface to a procedure with coarray dummy arguments.

interface

subroutine sub(x,y)

real :: x(:)[*], y(:)[*]

end subroutine sub

end interface

:

real, allocatable :: a(:)[:], b(:,:)[:]

:

call sub(a(:),b(1,:))

The restrictions that avoid copy-in and/or copy-out are:

1. the actual argument must be a coarray (see Section 3 for the rules on whether a subobject
is a coarray); and

2. if the dummy argument is a coarray that has the contiguous attribute (new in Fortran
2008) or is not of assumed shape, the actual argument must be “simply contiguous” (a
new term for an array that satisfies a set of conditions that have been chosen to allow the
compiler to verify at compile time that the array will always be contiguous).

If a dummy argument is an allocatable coarray, the corresponding actual argument must be an
allocatable coarray of the same rank and corank. Furthermore, it must be associated, perhaps
through many levels of procedure call with the same non-dummy-argument coarray on every
image. This allows the coarray to be allocated or deallocated in the procedure.

If a dummy argument is an allocatable coarray or has a component that is an allocatable
coarray, it must not have intent(out). The avoids the possibility of an implicit synchronization
associated with deallocation.

Automatic-array coarrays are not permitted. For example, the following code fragment is not
permitted

ISO/IEC JTC1/SC22/WG5 N1787 11

subroutine solve3(n)

integer :: n

real :: work(n)[*] ! Not permitted

Were automatic-array coarrays permitted, it would be necessary to require image synchroniza-
tion, both after memory is allocated on entry and before memory is deallocated on return. We
would also need rules to ensure that the sizes are the same in all images.

A function result is not permitted to be a coarray or to be of a type that has a coarray component
at any level of component selection. A coarray function result is like an automatic coarray and
is disallowed for the same reasons.

The rules for resolving generic procedure references are based on the local properties and are
therefore unchanged. The rules cannot be extended to allow overloading of array and coarray
versions since the syntactic form of an actual argument would be the same in the two cases.

A pure or elemental procedure is not permitted to define a coindexed object or contain any image
control statements (Section 12.8), since these involve side effects. However, it may reference the
value of a coindexed object.

Unless it is allocatable or a dummy argument, an object that is a coarray or has a coarray
component is required to have the save attribute. If a coarray were declared in a procedure, with
a fixed size but without the save attribute, there would need to be an implicit synchronization
on entry to the procedure and return from it. Without this, there might be a reference from one
image to non-existent data on another image. An allocatable coarray is not required to have
the save attribute because a recursive procedure may need separate allocatable arrays at more
than one level of recursion.

Note that in Fortran 2008, all variables declared in the specification part of a module or sub-
module, including coarrays, automatically have the save attribute.

A procedure with a non-allocatable coarray dummy argument will usually be called simultane-
ously on all images with the same actual coarray, but this is not a requirement. For example,
the images may be grouped into two teams and the images of one team may be calling the
procedure with one coarray while the images of the other team are calling the procedure with
another coarray or are executing different code.

Each image independently associates its non-allocatable coarray dummy argument with an actual
coarray, perhaps through many levels of procedure call, and defines the corank and cobounds
afresh. It uses these to interpret each reference to a coindexed object, taking no account of
whether the remote image is executing the same procedure with the same coarray.

6 Volatility

The volatility of a dummy coarray is required to agree with the volatility of the corresponding
actual argument. Without this restriction, the value of a non-volatile coarray might be altered
via another image by means not specified by the program, that is, behave as volatile.

12 ISO/IEC JTC1/SC22/WG5 N1787

Similarly, agreement of volatility is required when accessing a coarray by use association, host
association, or in a block from the scope containing it. Here, the restriction is simple; since the
volatility is the same by default, the volatile attribute must not be respecified for an accessed
object.

For the same reason, volatility agreement is required for pointer association with any part of a
coarray.

7 Interoperability

Coarrays are not interoperable, since C does not have the concept of a data object like a coarray.
Interoperability of coarrays with UPC might be considered in the future.

8 Storage association

Coarrays are not permitted in common and equivalence statements.

9 Allocatable coarrays

A coarray may be allocatable. The allocate statement is extended so that the cobounds can
be specified, for example,

real, allocatable :: a(:)[:], s[:,:]

:

allocate (a(10)[*], s[-1:34,0:*])

The cobounds must always be included in the allocate statement and the upper bound for
the final codimension must always be an asterisk. For example, the following are not permitted
(compile-time constraints):

allocate(a(n)) ! Not allowed (no cobounds)

allocate(a(n)[p]) ! Not allowed (cobound not *)

Also, the value of each bound, cobound, or length type parameter is required to be the same on
all images. For example, the following is not permitted (run-time constraint)

allocate(a(this_image())[*]) ! Not allowed (varying local bound)

Furthermore, the dynamic types must be the same on all images.

There is implicit synchronization of all images in association with each allocate statement
that involves one or more coarrays. Images do not commence executing subsequent statements
until all images finish executing the same allocate statement. Similarly, for deallocate, all
images delay making the deallocations until they are all about to execute the same deallocate

ISO/IEC JTC1/SC22/WG5 N1787 13

statement. Without these rules, an image might reference data on another image that has not
yet been allocated or has already been deallocated.

When an image executes an allocate statement, no communication is necessarily involved apart
from any required for synchronization. The image allocates the coarray and records how the
corresponding coarrays on other images are to be addressed. The compiler is not required to
enforce the rule that the bounds and cobounds are the same on all images, although it may do
so in debug mode. Nor is the compiler responsible for detecting or resolving deadlock problems.

For an allocatable coarray declared without the save attribute in a procedure, if the coarray is
still allocated when a return statement or an end statement is executed, there is an implicit
deallocation (and associated synchronization) before the procedure is exited. Similarly, if an
allocatable coarray without the save attribute is declared within a block construct (new in
Fortran 2008) and the coarray is still allocated when the block is left, there is an implicit
deallocation.

10 Restrictions on intrinsic assignment for coarrays

Fortran 2003 allows the shapes or length parameters to disagree in an intrinsic array assignment
to an allocatable array; the system performs the appropriate reallocation. Such disagreement
is not permitted for an allocatable coarray, since it would involve synchronization. Similarly, in
an intrinsic assignment for a scalar of a derived type with an allocatable coarray component,
no disagreement of allocation status or shape is permitted for the coarray component. This, of
course, can be checked by the system on the executing image.

Restrictions are also needed for coindexed objects to avoid the possibility of requiring allocation
to occur on another image. In an intrinsic assignment to a coindexed object that is an allocat-
able array, the shapes and length parameters are required to agree. Intrinsic assignment to a
coindexed object of a type with an allocatable component at any level of component selection
is not permitted.

For the same reason, intrinsic assignment is not permitted to a polymorphic coarray or a poly-
morphic coindexed object.

11 Coarrays with allocatable or pointer components

A coarray is not permitted to be a pointer. Furthermore, because an object of type c ptr or
c funptr has the essence of a pointer, a coarray is not permitted to be of either of these types.
However, a coarray may be of a derived type with pointer or allocatable components. The
targets of such components are always local with shapes that may vary from image to image.

To use coarray syntax for data structures with different sizes on different images, we may declare
a coarray of a derived type with a component that is an allocatable array or a pointer. On each
image, the component is allocated locally or is pointer assigned to a local target, so that it has

14 ISO/IEC JTC1/SC22/WG5 N1787

the desired size for that image (or not allocated or pointer assigned, if it is not needed on that
image). It is straightforward to access such data on another image, for example,

x(:) = z[p]%alloc(:)

where the square bracket is associated with the variable z, not with its component. In words,
this statement means ‘Go to image p, obtain the address of the allocated component array, and
copy the data in the array itself to the local array x’. Data manipulation of this kind is handled
awkwardly, if at all, in other programming models. Its natural expression in coarray syntax gives
the programmer power and flexibility for writing parallel code. Numrich used this technique to
build an object-based parallel library for CoArray Fortran (Numrich 2006).

If coarray z contains a data pointer component ptr, z[q]%ptr is a reference to the target of
component ptr of z on image q. This target must reside on image q and must have been
established by an allocate statement executed on image q or a pointer assignment executed
on image q, for example,

z%ptr => r ! Local association

A local pointer can be associated with a target component on the local image,

r => z%ptr ! Local association

but cannot be associated with a target component on another image,

r => z[q]%ptr ! Not allowed (compile-time constraint)

For this reason, an actual argument corresponding to a dummy pointer is not permitted to be
a coindexed object and an actual argument that is a coindexed object is not permitted to have
a pointer ultimate component. If an association with a target component on another image
would otherwise be implied, the pointer becomes undefined. For example, this happens with
the derived-type intrinsic assignments of Figure 4 are executed on an image with an index other
than q.

Figure 4: Code executed on an image with an index other than q.

z[q] = z ! The pointer component of z[q] becomes undefined

z = z[q] ! The pointer component of z becomes undefined

Similarly, for a coarray of a derived type that has a pointer or allocatable component, it is illegal
to allocate one of those components on another image:

type(something), allocatable :: t[:]

...

allocate(t[*]) ! Allowed

allocate(t%ptr(n)) ! Allowed

allocate(t[q]%ptr(n)) ! Not allowed (compile-time constraint)

A coarray is permitted to be of a type that has a procedure pointer component or a type bound
procedure. A procedure reference through a procedure pointer component of a coindexed object,

ISO/IEC JTC1/SC22/WG5 N1787 15

for example,

call a[p]%proc(x)

is not permitted since the remote procedure target might be meaningless on the executing
image. However, a reference though a type-bound procedure is allowed provided the type is not
polymorphic; this ensures that the type and hence the procedure is the same on all images.

So that the implementation does not need to access the dynamic type of an object on another
image, no references are permitted to a polymorphic subobject of a coindexed object or to a
coindexed object that has a polymorphic allocatable subcomponent.

12 Synchronization

Most of the time, each image executes on its own as a Fortran program without regard to the
execution of other images. It is the programmer’s responsibility to ensure that, whenever an
image alters the contents of a variable, no other image might still need the old value and that,
whenever an image accesses the contents of a variable, it is not an old value that has been
subsequently updated by another image.

To avoid such memory race conditions, the program must execute synchronization statements.

12.1 sync all statement

In most cases, the programmer will use the sync all statement for synchronization. This
provides a barrier for the important case where all images must synchronize before moving
forward. Any statement executed before the barrier on image P is also executed before any
statement executed after the barrier on image Q. The normal rules relating to execution order
apply. In particular, if the value of a variable is changed by image P before the barrier, it is
accessible to image Q after the barrier.

Figure 5: Read data on image 1 and broadcast it.

real :: p[*]

...

sync all

if (this_image()==1) then

read (*,*) p

do i = 2, num_images()

p[i] = p

end do

end if

sync all

16 ISO/IEC JTC1/SC22/WG5 N1787

Figure 5 shows a simple example of the use of sync all. Image 1 reads data and broadcasts it
to other images. The first sync all ensures that image 1 does not interfere with any previous
use of p by another image. The second sync all ensures that another image does not access p

before the new value has been set by image 1.

Although usually the synchronization will be at the same sync all statement on all images,
this is not a requirement. The additional flexibility may be useful, for example, when different
images are executing different code and need to exchange data from time to time.

The behaviour at program initiation is as if there were a sync all as the first executable
statement of the main program. The code may rely on initializations of coarray variables on
other images.

12.2 Execution segments

There are other statements that allow the programmer to control execution order between im-
ages. Each such statement is called an image control statement and they are listed in Section
12.8.

On each image, the sequence of statements executed before the first execution of an image control
statement or between the execution of two image control statements is known as a segment.
The segment executed immediately before the execution of an image control statement includes
the evaluation of all expressions within the statement.

For example, in Figure 5, each image executes a segment before executing the first sync all

statement, executes a segment between executing the two sync all statements, and executes a
segment after executing the second sync all statement.

On each image P , the statement execution order determines the segment order, Pi, i=1, 2,
Between images, the execution of corresponding image control statements on images P and Q

at the end of segments Pi and Qj may ensure that either Pi precedes Qj+1, or Qj precedes Pi+1,
or both.

A consequence is that the set of all segments on all images is partially ordered: the segment Pi

precedes segment Qj if and only if there is a sequence of segments starting with Pi and ending
with Qj such that each segment of the sequence precedes the next either because they are on
the same image or because of the execution of corresponding image control statements.

A pair of segments Pi and Qj are called unordered if Pi neither precedes nor succeeds Qj .

For example, if the middle segment of Figure 5 is Pi on image 1 and Qj on another image Q,
Pi−1 precedes Qj+1 and Pi+1 succeeds Qj−1, but Pi and Qj are unordered.

There are restrictions on what is permitted in a segment that is unordered with respect to
another segment. These provide the compiler with scope for optimization. Variables may be
defined and referenced during the execution of unordered segments by calls to atomic subroutines
(Section 15.3). Apart from this,

ISO/IEC JTC1/SC22/WG5 N1787 17

• if a variable is defined on an image in a segment, it must not be referenced, defined, or
become undefined in a segment on another image unless the segments are ordered,

• if the allocation of an allocatable subobject of a coarray or the pointer association of
a pointer subobject of a coarray is changed on an image in a segment, that subobject
shall not be referenced or defined in a segment on another image unless the segments are
ordered, and

• if a procedure invocation on image P is in execution in segments Pi, Pi+1, ..., Pk and defines
a non-coarray dummy argument, the argument associated entity shall not be referenced or
defined on another image Q in a segment Qj unless Qj precedes Pi or succeeds Pk (because
a copy of the actual argument may be passed to the procedure).

If follows that for code in a segment, the compiler is free to use almost all its normal optimization
techniques as if only one image were present. In particular, code motion optimizations may be
applied, provided calls of atomic subroutines are not involved. For an example of an optimization
that is not available, consider the code

integer (kind=short) x(8)[*]

:

! Computation that references and alters x(1:7)

:

The compiler must not effectively make this replacement

integer (kind=short) x(8)[*], temp(8)

:

temp(1:8) = x(1:8) ! Faster than temp(1:7) = x(1:7)

! Computation that references and alters temp(1:7)

x(1:8) = temp(1:8)

because another image might define x(8) in a segment that is unordered with respect to this
one.

12.3 The sync images statement

For greater flexibility, the sync images statement performs a synchronization of the image that
executes it with each of the other images in a set of images that it specifies. Executions of
sync images statements on images M and T correspond if the number of times image M has
executed a sync images statement with T in its image set is the same as the number of times
image T has executed a sync images statement with M in its image set. The segments that
executed before the sync images statement on either image precede the segments that execute
after the corresponding sync images statement on the other image. Figure 6 shows an example
that imposes the fixed order 1, 2, ... on images. The image set is specified in parentheses as
an integer scalar holding an image index, an integer array of rank one holding distinct image
indices, or an asterisk to indicate all images.

18 ISO/IEC JTC1/SC22/WG5 N1787

Figure 6: Using sync images to impose an order on images.

me = this_image()

ne = num_images()

if(me==1) then

p = 1

else

sync images(me-1)

p = p[me-1] + 1

end if

if(me<ne) sync images(me+1)

Figure 7: Using sync images to make other images to wait for image 1.

if (this_image() == 1) then

! Set up coarray data needed by all other images

sync images(*)

else

sync images(1)

! Use the data set up by image one

end if

Execution of a sync images(*) statement is not equivalent to the execution of a sync all

statement. sync all causes all images to wait for each other. sync images statements are not
required to specify the same image set on all the images participating in the synchronization.
In the example in Figure 7, image one will wait for each of the other images to reach the sync

images(1) statement. The other images wait for image one to set up the data, but do not wait
on any of the other images.

12.4 The lock and unlock statements

Locks provide a mechanism for controlling access to data that is referenced or defined by more
than one image.

A lock is a scalar variable of the derived type lock type that is defined in the intrinsic module
iso fortran env and has private components. It must be a coarray or a subobject of a coarray.
It has one of two states: “locked” and “unlocked”. The unlocked state is represented by a single
value and this is the initial value. All other values are locked. The only way to change its value
is by executing the lock or unlock statement. If a lock variable is locked, it can be unlocked
only by the image that locked it.

The example in Figure 8 illustrates the use of lock and unlock statements. Each image has its
own queue; any image can add a task to any queue. If a lock statement is executed for a lock
variable that is locked by another image, the image waits for the lock to be unlocked by that

ISO/IEC JTC1/SC22/WG5 N1787 19

Figure 8: Using lock and unlock to manage queues.

module queue_manager

use, intrinsic :: iso_fortran_env, only: lock_type

type task

:

end type

type(lock_type), private :: queue_lock[*]

type(task), private :: queue(100)[*]

integer, private :: queue_size[*]

contains

subroutine get_task(job)

type(task),intent(out) :: job

lock(queue_lock)

job=queue(queue_size)

queue_size=queue_size-1

unlock(queue_lock)

end subroutine get_task

subroutine put_task(job,image)

type(task),intent(in) :: job

integer,intent(in) :: image

lock(queue_lock[image])

queue_size[image]=queue_size[image]+1

queue(queue_size[image])[image] = job

unlock(queue_lock[image])

end subroutine put_task

end module queue_manager

image. The effect in this example is that get task has to wait if another image is adding a task
to the queue and put task has to wait if get task is getting a task from the queue or another
image is executing put task for the same queue.

There is a form of the lock statement that avoids a wait when the lock variable is locked:

logical :: success

lock(queue_lock,acquired_lock=success)

If the variable is unlocked, it is locked and the value of success is set to true; otherwise, success
is set to false and there is no wait.

An error condition occurs for a lock statement if the lock variable is already locked by the
executing image and for an unlock statement if the lock variable is not already locked by the
executing image.

Any particular lock variable is successively locked and unlocked by a sequence of lock and
unlock statements, each of which separates two segments on the executing image. If execution

20 ISO/IEC JTC1/SC22/WG5 N1787

of such an unlock statement on image M is immediately followed in this sequence by execution of
a lock statement on image T, the segment that precedes the execution of the unlock statement
on image M precedes the segment that follows the execution of the lock statement on image T.

12.5 The sync memory statement

The execution of sync memory statement defines a boundary on an image between two segments,
each of which can be ordered in some user-defined way with respect to segments on other images.
Unlike the other image control statements, it does not have any in-built synchronization effect.
In case there is some user-defined ordering between images, the compiler will probably avoid
optimizations involving moving statements across the sync memory statement and will ensure
that any changed data that the image holds in temporary memory such as cache or registers or
even packets in transit between images, is made visible to other images. Also, any data from
other images that is held in temporary memory will be treated as undefined until it is reloaded
from its host image.

For example, consider the code in Figure 9, which is executed on images p and q and calls
atomic subroutines (see Section 15.3). The do loop is known as a spin-wait loop. Once image

Figure 9: Spin-wait loop

use, intrinsic :: iso_fortran_env

logical(atomic_logical_kind) :: locked[*] = .true.

logical :: val

integer :: iam, p, q

:

iam = this_image()

if (iam == p) then

sync memory

call atomic_define(locked[q],.false.)

else if (iam == q) then

val = .true.

do while (val)

call atomic_ref(val,locked)

end do

sync memory

end if

q starts executing it, it will continue until it finds the value .false. for val. The atomic ref

call ensures that the value is refreshed on each loop execution. The effect is that the segment
on image p ahead of the first sync memory statement precedes the segment on image q that
follows the second sync memory statement. The normative text of the standard does not specify
how resources should be distributed between images, but a note expects that the sharing should
be equitable. It is therefore just possible that a conforming implementation might cause the

ISO/IEC JTC1/SC22/WG5 N1787 21

program to hang while doing nothing on image p.

Note that the segment in which locked[q] is altered is unordered with respect to the segment
in which it is referenced. This is permissible by the rules in the final paragraph of Section 12.2.

Given the atomic subroutines and the sync memory statement, customized synchronizations can
be programmed in Fortran as procedures, but it may be difficult for the programmer to ensure
that they will work correctly on all implemenatations.

12.6 stat= and errmsg= specifiers in synchronization statements

All the synchronization statements, that is, sync all, sync images, lock, unlock, and sync

memory, have optional stat= and errmsg= specifiers. They have the same role for these state-
ments as they do for allocate and deallocate in Fortran 2003.

If any of these statements, including allocate and deallocate, encounter a stopped image, the
stat= variable is given the value of the constant stat stopped image in the iso fortran env

intrinsic module, and the effect of executing the statement is otherwise the same as that of
executing the sync memory statement.

12.7 Critical sections

Exceptionally, it may be necessary to limit execution of a piece of code to one image at a time.
Such code is called a critical section. There is a new construct to delimit a critical section:

critical

: ! code that is executed on one image at a time

end critical

No image control statement may be executed during the execution of a critical construct, that
is, the code executed is a segment. Branching into or out of a critical section is not permitted.

If image T is the next to execute the construct after image M , the segment in the critical section
on image M precedes the segment in the critical section on image T .

12.8 The image control statements

The full list of image control statements is

• sync all statement;

• sync images statement;

• lock or unlock statement;

• sync memory statement;

22 ISO/IEC JTC1/SC22/WG5 N1787

• allocate or deallocate statement involving a coarray;

• critical or end critical statement;

• end or return statement that involves an implicit deallocation of a coarray;

• a statement that completes the execution of a block (new in Fortran 2008) and results in
an implicit deallocation of a coarray;

• stop or end program statement.

All of the image control statements include the effect of executing a sync memory statement.

13 Program termination

It seems natural to allow all images to continue executing until they have all executed a stop

or end program statement, provided none of them encounters an error condition that may be
expected to terminate its execution. On the other hand, if such an error condition occurs on
one image, the computation is flawed and it is desirable to stop the other images as soon as is
practicable.

For this reason, termination of execution of an image occurs in three steps: initiation, synchro-
nization, and completion. All images synchronize execution at the second step so that no image
starts the completion step until all images have finished the initiation step. Termination of exe-
cution of an image is either ‘normal termination’ or ‘error termination’. An image that initiates
normal termination also completes normal termination. An image that initiates error termi-
nation also completes error termination. The synchronization step is executed by all images.
Termination of execution of the program occurs when all images have terminated execution.

An image initiates normal termination if it executes a stop or end program statement. The
synchronization step allows its data to remain accessible to the other images until they all
reach the synchronization step. Normal termination may also be initiated during execution of a
procedure defined by a C companion processor.

An image initiates error termination if it executes a statement that would cause the termination
of a single-image program and is not a stop or end program statement. This causes all other
images that have not already initiated termination to initiate error termination. Within the
performance limits of the processor’s ability to send signals to other images, this propagation
of error termination should be immediate. The exact details are intentionally left processor
dependent.

The statement

all stop

has been introduced. When executed on one image, it initiates error termination there and hence
causes all other images that have not already initiated termination to initiate error termination.

ISO/IEC JTC1/SC22/WG5 N1787 23

It thus causes the whole calculation to stop as soon as is practicable. Just like stop, it must
not be executed during I/O processing.

The full list of causes for the initiation of error termination is

• an all stop statement is executed,

• an error condition occurs during execution of an allocate, deallocate, sync all, sync
images, lock, unlock, or sync memory statement without a stat= specifier,

• an error occurs during execution of an open, close, read, write, backspace, endfile,
rewind, flush, wait, or inquire statement without an iostat=, end=, or err= specifier,

• an error occurs during execution of a print statement,

• an error occurs during execution of the execute command line intrinsic subroutine and
the optional cmdstat argument is not present,

• an error condition occurs by means outside Fortran.

13.1 Example of normal and error termination

The code fragment in Figure 10 illustrates the use of stop and all stop in a climate model that
uses two teams, one for the ocean and one for the atmosphere.

If something goes badly wrong in the atmosphere calculation, the whole model is invalid and a
restart is impossible, so all images stop as soon as possible without trying to preserve any data.

If something goes slightly wrong with the atmosphere calculation, the images in the atmosphere
team write their data to files and stop, but their data remain available to the ocean images
which complete execution of the ocean subroutine. On return from the computation routines,
if something went slightly wrong with the atmosphere calculation, the ocean images write data
to files and stop, ready for a restart in a later run.

14 Input/output

The default unit for input (* in a read statement or input unit in the intrinsic module
iso fortran env) is preconnected on image one only.

The default unit for output (* in a write statement or output unit in the intrinsic module
iso fortran env) and the unit identified by error unit in the intrinsic module iso fortran env

are preconnected on each image. The files to which these are connected are regarded as separate,
but it is expected that the processor will merge their records into a single stream or a stream for
all output unit files and a stream for all error unit files. If the order of writes from images is
important, synchronization and the flush statement are required, since the image is permitted

24 ISO/IEC JTC1/SC22/WG5 N1787

Figure 10: stop and all stop in a climate model.

use,intrinsic :: iso_fortran_env, only: stat_stopped_image

integer, allocatable :: ocean_team(:), atmosphere_team(:)

integer :: i, sync_stat

:

! Form two teams

ocean_team =[(i,i=1,num_images()/2)]

atmosphere_team = [(i,i=1+num_images()/2,num_images())]

:

! Perform independent calculations

if (this_image() > num_images()/2) then

call atmosphere (atmosphere_team)

else

call ocean (ocean_team)

end if

! Wait for both teams to finish

sync all (stat=sync_stat)

if (sync_stat == stat_stopped_image) then

: ! Preserve data on file

stop

end if

call exchange_data ! Exchange data between teams

:

contains

subroutine atmosphere (team)

integer :: team(:)

: ! Perform atmosphere calculation.

if (...) then ! Something has gone slightly wrong

: ! Preserve data on file

stop

end if

:

if (...) all stop ! Something has gone very badly wrong

:

sync images (team, stat=sync_stat))

if (sync_stat == stat_stopped_image) then

: ! Remaining atmosphere images preserve data in a file

stop

end if

end subroutine atmosphere

ISO/IEC JTC1/SC22/WG5 N1787 25

to hold the data in a buffer and delay the transfers until it executes a flush statement for the
file or the file is closed.

Any other preconnected unit is connected on the executing image only and the file is completely
separate from any preconnected file on another image.

The open statement connects a file to a unit on the executing image only. Whether a named file
on one image is the same as a file with the same name on another image is processor dependent.
A named file must not be connected on more than one image.

15 Intrinsic procedures

The following intrinsic procedures are added. None are permitted in an initialization expression.
We use square brackets [] to indicate optional arguments.

15.1 Inquiry functions

num images() returns the number of images as a default integer scalar.

lcobound(coarray[,dim,kind]) returns the lower cobounds of a coarray in just the same way
as lbound returns the lower bounds of an array.

ucobound(coarray[,dim,kind]) returns the upper cobounds of a coarray in just the same
way as ubound returns the upper bounds of an array.

15.2 Image index functions

image index(coarray,sub) returns the index of the image corresponding to the set of cosub-
scripts for coarray as a default integer scalar.

coarray is a coarray of any type.

sub is a rank-one integer array of size equal to the corank of coarray.

this image() returns the index of the invoking image as a default integer scalar.

this image(coarray[,dim]) returns the set of cosubscripts of coarray that denotes data on
the invoking image.

coarray is a coarray of any type.

dim is scalar integer whose value is in the range 1 ≤ dim ≤ n where n is the corank of
coarray.

If dim is absent, the result is a default integer array of rank one and size equal to the
corank of coarray; it holds the set of cosubscripts of coarray for data on the invoking

26 ISO/IEC JTC1/SC22/WG5 N1787

image. If dim is present, the result is a default integer scalar holding cosubscript dim of
coarray for data on the invoking image.

15.3 Atomic subroutines

An atomic subroutine is a new class of intrinsic subroutine. It acts on a scalar variable atom

of type integer(atomic int kind) or logical(atomic logical kind), whose kind value is
defined in the intrinsic module iso fortran env. The variable atom must be a coarray or
a coindexed object. The effect of executing an atomic subroutine is as if the action on the
argument atom occurs instantaneously, and thus does not overlap with other atomic actions
that might occur asynchronously. To avoid performance loss, the ordering of interleaved actions
on different atomic variables in different images is not defined by the standard.

call atomic define(atom,value) defines atom atomically with the value value.

atom is a scalar coarray or coindexed object of type integer(atomic int kind) or
logical(atomic logical kind) and intent(out). If its kind is the same as that
of value or its type is logical, it is given the value of value. Otherwise, it is given
the value int(value,atomic int kind).

value is a scalar of the same type as atom and intent(in).

call atomic ref(value,atom) defines value atomically with the value of atom.

value is a scalar of the same type as atom and intent(out). If its kind is the same as
that of atom or its type is logical, it is given the value of atom. Otherwise, it is
given the value int(atom,kind(value)).

atom is a scalar coarray or coindexed object of type integer(atomic int kind) or
logical(atomic logical kind) and intent(in).

16 Acknowledgements

I would like to express special thanks to Bill Long of Cray, for his help with many of the detailed
changes made since the 1998 report and for his advocacy of coarrays in the US Fortran Commit-
tee PL22.3; and I would like to thank Bill Long, Aleks Donev, Van Snyder, and Bob Numrich
for carefully reading drafts of this document and suggesting corrections and improvements.

17 References

Bailey, D., Harris, T., Saphir, W., van der Wijngaart, Woo, A. and Yarrow, M. (1995). The
NAS Parallel Benchmarks 2.0. Report NAS-95-020, December, 1995.

ISO/IEC JTC1/SC22/WG5 N1787 27

Bonachea, D. (2002). GASNet Specification, v 1.1. Report No. UCB/CSD-02-1207, Computer
Science Division (EEES), University of California, Berkeley, California 94729, USA.

Coarfa, C., Dotsenko, Y., Mellor-Crummey, J., Cantonnet, F, El-Ghazawi, T., Mohanti, A.,
Yao, Y., and Chavarŕıa-Miranda, D. (2005). An evaluation of global address space lan-
guages: co-array fortran and unified parallel C. In PPoPP ’05: Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of parallel programming, 36-47.

Dotsenko, Y., Coarfa, C., and Mellor-Crummey, J. (2004). A multi-platform Co-Array Fortran
compiler. In Proceedings of the 13th International Conference on Parallel Architecture
and Compilation Techniques (PACT 2004), Antibes Juan-les-Pins, France.

Nieplocha, J. and Carpenter, B. (1999). ARMCI: A portable remote memory copy library for
distributed array libraries and compiler run-time systems, Vol. 1586 of Lecture Notes in
Computer Science, pp. 533-546, Springer-Verlag.

Numrich, R. W. (1997). F−−: A parallel extension to Cray Fortran. Scientific Programming
6, 275-284.

Numrich, R.W. (2005). Parallel numerical algorithms based on tensor notation and co-array
Fortran syntax. Parallel Computing, 31, pp. 588-607.

Numrich, R.W. (2006). A Parallel Numerical Library for Co-array Fortran. Parallel Processing
and Applied Mathematics: Proceedings of the Sixth International Conference on Parallel
Processing and Applied Mathematics (PPAM05), pp. 960-969, Springer Lecture Notes in
Computer Science, LNCS 3911.

Numrich, R. W. and Reid, J. K. (1998). Co-Array Fortran for parallel programming. ACM
Fortran Forum (1998), 17, 2 (Special Report) and Rutherford Appleton Laboratory report
RAL-TR-1998-060 available as

ftp://ftp.numerical.rl.ac.uk/pub/reports/nrRAL98060.pdf

Numrich, R. W. and Reid, J. K. (2005). Co-arrays in the next Fortran Standard. ACM Fortran
Forum (2005), 24, 2, 2-24 and WG5 paper

ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1642.pdf

Numrich, R. W. and Reid, J. K. (2007). Co-arrays in the next Fortran Standard. Scientific
Programming (2006), 14, 1-18.

Numrich, R. W., Reid, J. K., and Kim, K. (1998). Writing a multigrid solver using Co-array
Fortran. Proceeding of the fourth International Workshop on Applied Parallel Computing
(PARA98), pp. 390-399, Springer Lecture Notes in Computer Science, LNCS 1541.

Numrich, R. W. and Steidel, J. L. (1997). F−−: A simple parallel extension to Fortran 90.
SIAM News, 30, 7, 1-8.

28 ISO/IEC JTC1/SC22/WG5 N1787

Reid, J. K. (2005). Co-array Fortran for parallel programming. ISO/IEC/JTC1/SC22/WG5-
N1626, requirement UK-001, see

ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1626.txt

WG5 (2005). Revision of Requirement UK-001. ISO/IEC/JTC1/SC22/WG5-N1639, see

ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1639.txt

WG5 (2008). Draft revision of the Fortran Standard. ISO/IEC/JTC1/SC22/WG5-N1723, see

ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1723.pdf

18 Appendix: Changes from the Fortran Forum article of 2005

Here is a summary of the main changes since the report of Numrich and Reid (2005).

1. The hyphen has been removed from the terms ‘co-array’, ‘co-rank’, ‘co-bound’, etc., for
consistency with the use of the terms ‘cosine’, ‘cotangent’, etc.

2. The term ‘coarray’ now refers to the object on the executing image, rather than the
collection of objects on all the images. Furthermore, it includes those subjects that are
permitted to be associated as actual arguments with dummy coarrays. The Standard was
not consistent and this interpretation simplifies the text.

3. The following features have been moved to a future Technical Report and are not part of
the core set: the collective subroutines, the type image team and the features that use it,
notify and query, file connection on more than one image. The features that have been
moved are not described in this article.

4. All the synchronization intrinsic procedures have been replaced by corresponding state-
ments. These statements all have stat= and errmsg= specifiers. flush memory is now
called sync memory.

5. The default input file is connected on image 1 only. The default output and error files are
preconnected on all images.

6. If a dummy argument that is allocatable or has an allocatable ultimate component is
associated with a coindexed actual argument, the dummy argument must have the intent
in or value attribute. Otherwise, an explicit interface is no longer needed just because a
coindexed object is an actual argument.

7. An actual argument corresponding to a dummy pointer is not permitted to be a coindexed
object.

ISO/IEC JTC1/SC22/WG5 N1787 29

8. A coindexed object is allowed to be of a type with pointer ultimate components, but is
not permitted as an actual argument. A pointer component becomes undefined if its value
is copied from an associated pointer on another image.

9. Intrinsic assignment to a coindexed object of a type with an allocatable component at
any level of component selection is not permitted. Previously, the component shapes were
required to agree which is at variance with the rule for arrays.

10. Significant changes re termination have been made. Section 13 has been added to this
report to explain how it now works.

11. Coarrays are not permitted in common and equivalence statements.

12. lcobound and ucobound have been added.

13. A procedure reference through a procedure pointer component of a coindexed object is
not permitted.

14. The concepts of image control statments and the execution segment have been introduced
and restrictions added for a segment that is unordered with respect to another segment.

15. Rather than being undefined, the final upper cobound of a coarray is now defined as the
largest value that the final cobound can take in a valid set of cobounds for the coarray.

16. The save attribute is no longer required for coarrays declared in a module because it is
now implicit for all module variables.

17. No coarray is interoperable. Previously, coarrays were interoperable, but a procedure with
a coarray dummy argument was not.

18. The lock and unlock statements have been added.

19. The atomic subroutines atomic define and atomic ref have been added.

